The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection.

2015 
The blood fluke Schistosoma mansoni causes intestinal bilharzia. The parasite has a complex life cycle in which a freshwater snail serves as intermediate host from which the human infecting larvae hatch. These larvae will actively seek skin contact, penetrate through the epithelium and start developing straight away into adult worms. Development from larvae into adults needs thorough adjustment of gene expression through repositioning or modification of proteins that are associated with DNA (the chromatin). We decided to compare the chromatin of human infective larvae (cercariae), the first developmental stage after infection of the vertebrate host (schistosomula) and adults of S. mansoni. We found that cercariae possess chromatin structures (modifications of histone H3) around the beginning of genes that are very different from schistosomula and adults. We conclude that this structure serves to keep gene transcription in a poised state, i.e. transcription is initiated and can start immediately when the blocking histone modification is removed. A similar type of histone modification was found in embryonic stem cells of vertebrates and our data indicate that it is either a more ancient and/or more general means to poise transcription than previously assumed. Since many parasites possess infective stages that develop rapidly within the host, this particular chromatin structure could be a therapeutic target for a new class of antiparasitic drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    42
    Citations
    NaN
    KQI
    []