Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors

2020 
Abstract A series of 2,7-disubstituted-thieno[3,2-d]pyrimidine derivatives were designed, synthesized and evaluated as novel focal adhesion kinase (FAK) inhibitors. The novel 2,7-disubstituted-thieno[3,2-d]pyrimidine scaffold has been designed as a new kinase inhibitor platform that mimics the bioactive conformation of the well-known diaminopyrimidine motif. Most of the compounds potently suppressed the enzymatic activities of FAK and potently inhibited the proliferation of U-87MG, A-549 and MDA-MB-231 cancer cell lines. Among these derivatives, the optimized compound 26f potently inhibited the enzyme (IC50 = 28.2 nM) and displayed stronger potency than TAE-226 in U-87MG, A-549 and MDA-MB-231 cells, with IC50 values of 0.16, 0.27, and 0.19 μM, respectively. Compound 26f also exhibited relatively less cytotoxicity (IC50 = 3.32 μM) toward a normal human cell line, HK2. According to the flow cytometry results, compound 26f induced the apoptosis of MDA-MB-231 cells in a dose-dependent manner and effectively arrested MDA-MB-231 cells in G0/G1 phase. Further investigations revealed that compound 26f potently suppressed the migration of MDA-MB-231 cells. Collectively, these data support the further development of compound 26f as a lead compound for FAK-targeted anticancer drug discovery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    20
    Citations
    NaN
    KQI
    []