Analyzing the effect of transmissivity uncertainty on the reliability of a model of the northwestern Sahara aquifer system

2017 
Abstract Groundwater flow model of the transboundary Saharan aquifer system is developed in 2003 and used for management and decision-making by Algeria, Tunisia and Libya. In decision-making processes, reliability plays a decisive role. This paper looks into the reliability assessment of the Saharan aquifers model. It aims to detect the shortcomings of the model considered properly calibrated. After presenting the calibration results of the effort modelling in 2003, the uncertainty in the model which arising from the lack of the groundwater level and the transmissivity data is analyzed using kriging technique and stochastic approach. The structural analysis of piezometry in steady state and logarithms of transmissivity were carried out for the Continental Intercalaire (CI) and the Complexe Terminal (CT) aquifers. The available data (piezometry and transmissivity) were compared to the calculated values, using geostatistics approach. Using a stochastic approach, 2500 realizations of a log-normal random transmissivity field of the CI aquifer has been performed to assess the errors of the model output, due to the uncertainty in transmissivity. Two types of bad calibration are shown. In some regions, calibration should be improved using the available data. In others areas, undertaking the model refinement requires gathering new data to enhance the aquifer system knowledge. Stochastic simulations’ results showed that the calculated drawdowns in 2050 could be higher than the values predicted by the calibrated model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []