A density--functional study of interfacial properties of colloid--polymer mixtures

2004 
Interfacial properties of colloid--polymer mixtures are examined within an effective one--component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer--induced depletion forces. Restriction is made to zero, one and two--body effective potentials, and a free energy functional is used which treats colloid excluded volume correlations within Rosenfeld's Fundamental Measure Theory, and depletion--induced attraction within first--order perturbation theory. This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to surface properties near a hard wall, to the depletion interaction between two walls, and to the fluid--fluid interface of demixed colloid--polymer mixtures. The results of the present theory compare well with predictions of a fully two--component representation of mixtures of colloids and ideal polymers (the Asakura--Oosawa model), and allow a systematic investigation of the effects of polymer--polymer interactions on interfacial properties. In particular, the wall surface tension is found to be significantly larger for interacting than for ideal polymers, while the opposite trend is predicted for the fluid--fluid interfacial tension.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    12
    Citations
    NaN
    KQI
    []