Flow-Induced Vibration of a Large-Diameter Elbow Piping Based on Random Force Measurement Caused by Conveying Fluid: Visualization Test Results

2005 
A 1/3 scale flow-induced vibration test facility that simulates the hot-leg piping of the JNC sodium-cooled fast reactor (JSFR) is used to investigate the pressure fluctuations of the pipe, where the high velocity fluid flows inside the piping. By the measurement of the pressure drop in the elbow piping while changing the Reynolds number, the similarity law of this model is confirmed. To evaluate the flow-induced vibrations for the hot-leg and cold-leg pipes, the random force distributions along the pipe and their correlations are measured with pressure sensors in a water loop. It is found that a flow velocity-dependent periodic phenomenon in the rear region of the elbow, and the maximum flow-induced random vibration force in the pipe are observed in the region of flow separation downstream the elbow. Finally, a design method is proposed with power spectral densities of the pressure fluctuations classified into four sections, correlation lengths in the axial direction divided into three sections, and with correlation lengths in the tangential direction into four sections.Copyright © 2005 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []