Erosion dynamics of tungsten fuzz during ELM-like heat loading

2018 
Transient heat loading and high-flux particle loading on plasma facing components in fusion reactors can lead to surface melting and possible erosion. Helium-induced fuzz formation is expected to exacerbate thermal excursions, due to a significant drop in thermal conductivity. The effect of heating in edge-localized modes (ELMs) on the degradation and erosion of a tungsten (W) fuzz surface was examined experimentally in the Ultra High Flux Irradiation-II facility at the Center for Materials Under Extreme Environment. W foils were first exposed to low-energy He+ ion irradiation at a fluence of 2.6 × 1024 ions m−2 and a steady-state temperature of 1223 K. Then, samples were exposed to 1000 pulses of ELM-like heat loading, at power densities between 0.38 and 1.51 GW m−2 and at a steady-state temperature of 1223 K. Comprehensive erosion analysis measured clear material loss of the fuzz nanostructure above 0.76 GW m−2 due to melting and splashing of the exposed surface. Imaging of the surface via scanning elec...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    3
    Citations
    NaN
    KQI
    []