Expression and purification of rat recombinant aminopeptidase B secreted from baculovirus-infected insect cells

2004 
Abstract Aminopeptidase B (Ap-B) is a ubiquitous enzyme and its physiological function still remains an open question. This Zn 2+ -exopeptidase catalyzes the amino-terminal cleavage of basic residues of peptide or protein substrates, indicating a role in precursor processing. In addition, the enzyme exhibits a residual capacity to hydrolyze leukotriene A 4 (LTA 4 ) into the pro-inflammatory lipid mediator leukotriene B 4 (LTB 4 ) in vitro. This potential bi-functional nature of Ap-B is supported by a close structural relationship with LTA 4 hydrolase, which hydrolyzes LTA 4 into LTB 4 , in vivo, and exhibits an aminopeptidase activity, in vitro. Structural studies are necessary for the detailed understanding of the bi-functional enzymatic mechanism of Ap-B. In this study, we report cDNA cloning, baculovirus expression, and purification of the rat Ap-B (rAp-B). The Ap-B cDNA was constructed from extracted rat testes total RNA and introduced into the pBAC1 baculovirus transfer vector to generate recombinant baculoviruses. rAp-B expression, with or without COOH-hexahistidine tag, was tested in two different insect cell hosts (Sf9 and H5). The enzyme is secreted into the insect cell culture medium, which allowed a rapid purification of the protein. The His-tagged rAp-B was purified using metal affinity resin while the native recombinant rAp-B was partially purified using a single step DEAE Trisacryl ion exchange column. Although the recombinant rAp-B exhibits biochemical properties equivalent to those of the rat testes purified protein, the presence of the histidine-tag seems to partially inhibit the exopeptidase activity. However, this report shows that baculovirus-infected cells are a useful system to produce rat Ap-B for use in studying enzymatic mechanisms in vitro and 3D structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    25
    Citations
    NaN
    KQI
    []