An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori

2020 
An ultrasensitive enzyme-free electrochemical sandwich DNA biosensor is described for the detection of ssDNA oligonucleotides. A DNA sequence derived from the genom of Helicobacter pylori was selected as a model target DNA. The DNA assay was realized through catching target DNA on capture DNA immobilized gold electrode; then labeling the target DNA with reporter DNA (rpDNA) and initiator DNA (iDNA) co-modified gold nanoparticles (AuNPs). The high density of iDNAs serves as one of the amplification strategies. The iDNA triggers hybridization chain reaction (HCR) between two hairpins. This leads to the formation of a long dsDNA concatamer strand and represents one amplification strategy. The electrochemical probe [Ru(NH3)5L]2+, where L stands for 3-(2-phenanthren-9-ylvinyl)pyridine, intercalated into dsDNA chain. Multiple probe molecules intercalate into one dsDNA chain, serving as one amplification strategy. The electrode was subjected to differential pulse voltammetry for signal acquisition, and the oxidation peak current at −0.28 V was recorded. On each AuNP, 240 iDNA and 25 rpDNA molecules were immobilized. Successful execution of HCR at the DNA-modified AuNPs was confirmed by gel electrophoresis and hydrodynamic diameter measurements. Introduction of HCR significantly enhances the DNA detection signal intensity. The assay has two linear ranges of different slopes, one from 0.01 fM to 0.5 fM; and one from 1 fM to 100 fM. The detection limit is as low as 0.68 aM. Single mismatch DNA can be differentiated from the fully complementary DNA. Conceivably, this highly sensitive and selective assay provides a general method for detection of various kinds of DNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    9
    Citations
    NaN
    KQI
    []