Numerical simulation of dynamic failure and multi spall fracture in metals

2016 
Dynamic behavior of metals under intensive loading is characterized by intensive nucleation and growth of defects (microshears and microcracks) both under shock-wave compression and unloading conditions that may reduce to spallation and in some cases to multiple spallation. Spall fracture in material produced by the action of tensile stress in bulk of sample when two decompression waves collide. For higher amplitudes of shockwave the initiation of secondary spallation appears when intensity of residual wave is enough. The purpose of present investigation is consists on formulation of physical-mathematical model of dynamic behavior of metals under shock compression loadings. Plate impact test is considered. Wide range constitutive model based on the statistical theory for solids with defect (microshears and microcracks) was developed. Comparison of microstructure investigation and numerical simulation results of spall fracture (including secondary spallation) in vanadium is presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []