Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors.

2021 
The development of elastic electronic technology has promoted the application of triboelectric nanogenerators (TENGs) in flexible wearable electronics. However, most of the flexible electronics cannot achieve the requirements of being extremely stretchable, transparent, and highly conductive at the same time. Herein, we report a TENG constructed using a double-network polymer ionic conductor sodium alginate/zinc sulfate/poly acrylic-acrylamide (SA-Zn) hydrogel, which exhibited outstanding stretchability (>10,000%), high transparency (>95%), and good conductivity (0.34 S·m-1). The SA-Zn hydrogel TENG (SH-TENG) could harvest energy from typical human movements, such as bending, stretching, and twisting, which could light up 234 green commercial LEDs easily. Additionally, the SH-TENG can be used to prepare a self-powered smart training band sensor for monitoring arm stretching motion. This work may provide an innovative platform for accessing the next generation of sustainable wearable and sports monitoring electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []