Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: Heterogeneity and driving factors

2021 
Abstract Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is a crucial link between carbon and nitrogen cycles in estuarine and coastal ecosystems. However, the factors that affect the heterogeneous variability in n-DAMO microbial abundance and activity across estuarine and intertidal wetlands remain unclear. This study examined the spatiotemporal variations in n-DAMO microbial abundance and associated activity in different estuarine and intertidal habitats via quantitative PCR and 13C stable isotope experiments. The results showed that Candidatus 'Methylomirabilis oxyfera' (M. oxyfera)-like DAMO bacteria and Candidatus 'Methanoperedens nitroreducens' (M. nitroreducens)-like DAMO archaea cooccurred in estuarine and intertidal wetlands, with a relatively higher abundance of the M. oxyfera-like bacterial pmoA gene (4.0 × 106-7.6 × 107 copies g−1 dry sediment) than the M. nitroreducens-like archaeal mcrA gene (4.5 × 105-9.4 × 107 copies g−1 dry sediment). The abundance of the M. oxyfera-like bacterial pmoA gene was closely associated with sediment pH and ammonium (P 0.05). High n-DAMO microbial activity was observed, which varied between 0.2 and 84.3 nmol 13CO2 g−1 dry sediment day−1 for nitrite-DAMO bacteria and between 0.4 and 32.6 nmol 13CO2 g−1 dry sediment day−1 for nitrate-DAMO archaea. The total n-DAMO potential tended to be higher in the warm season and in the upstream freshwater and low-salinity estuarine habitats and was significantly related to sediment pH, total organic carbon, Fe(II), and Fe(III) contents (P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    7
    Citations
    NaN
    KQI
    []