Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity

2020 
The Ag-Cu2O/ PANI composite material was synthesized in a simple, fast, and low-cost process, which was attractive for its many applications in the fields of photocatalysis, surface enhanced Raman scattering (SERS), and characterization. SEM, TEM, XRD, FT-IR, TG, UV-Vis and XPS measurements confirmed the successful synthesis of the Ag-Cu2O/PANI composite material. First-principle calculations on the basis of density functional theory (DFT) were used to analyze regulation of work function of Cu2O. The results showed that the Ag-Cu2O/PANI had an extremely high stability when exposed to oxygen, water, and light for a long period of time, which was attributed to the physical coating of Ag nanoparticles (Ag NPs) transferring the electrons (e-) and holes (h+) inside the Cu2O to the surface through the Schottky barrier to prevent photocorrosion. The deposition of Ag NPs also increased the intensity and time of oxidative stress reaction of Cu2O, as evidenced by reactive oxygen species (ROS) test. Ag NPs distributed on the surface of Cu2O particles formed a large of ion release channels, resulting in an excellent sustained release of Cu2+ ions. PANI as a protective barrier prevented Cu2O from directly contacting the external solution and releasing Cu2+ ions. PANI had an excellent e- transfer ability as a conductive polymer, which improves the efficiency of photogenerated e- and h+ separation of Cu2O. Our results showed the Ag-Cu2O/PANI exhibited a high long-term antibacterial activity against S. aureus and P. aeruginosa, bacterial inhibition rates of which were maintained around 78% and 80% after stored in phosphate buffer saline (PBS) solution for 30 days. In this paper, the Ag-Cu2O/PANI is proposed which can enhance photocatalytic performance of Cu2O and long-term antibacterial activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    27
    Citations
    NaN
    KQI
    []