Experimental Demonstration of Conjugate-Franson Interferometry.

2021 
Franson interferometry is a well-known quantum measurement technique for probing photon-pair frequency correlations that is often used to certify time-energy entanglement. We demonstrate, for the first time, the complementary technique in the time basis called conjugate-Franson interferometry. It measures photon-pair arrival-time correlations, thus providing a valuable addition to the quantum toolbox. We obtain a conjugate-Franson interference visibility of $96\ifmmode\pm\else\textpm\fi{}1%$ without background subtraction for entangled photon pairs generated by spontaneous parametric down-conversion. Our measured result surpasses the quantum-classical threshold by 25 standard deviations and validates the conjugate-Franson interferometer (CFI) as an alternative method for certifying time-energy entanglement. Moreover, the CFI visibility is a function of the biphoton's joint temporal intensity, and is therefore sensitive to that state's spectral phase variation: something that is not the case for Franson interferometry or Hong-Ou-Mandel interferometry. We highlight the CFI's utility by measuring its visibilities for two different biphoton states: one without and the other with spectral phase variation, observing a 21% reduction in the CFI visibility for the latter. The CFI is potentially useful for applications in areas of photonic entanglement, quantum communications, and quantum networking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []