Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles.

2020 
Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported. This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP, a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse the sensor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []