Effect of Adding Hydrometeor Mixing Ratios Control Variables on Assimilating Radar Observations for the Analysis and Forecast of a Typhoon

2019 
The variational data assimilation (DA) method seeks the optimal analyses by minimizing a cost function with respect to control variables (CVs). CVs are extended in this study to include hydrometeor mixing ratios related variables besides the widely used sets of CVs (momentum fields, surface pressure, temperature, and pseudo-relative humidity). The impacts of the extra CVs are investigated in terms of hydrometeor mixing ratios to the assimilation of radar radial velocity (Vr) and reflectivity (RF) for the analysis and prediction of Typhoon Chanthu (2010). It is found that the background error statistics of the extended CVs from the National Meteorological Center (NMC) method is reliable. The track forecast is improved significantly by including hydrometeor mixing ratios as CVs to assimilate radar Vr and RF. The DA experiments using the hydrometer CVs show much improved intensity analysis and forecast. It also improves the precipitation forecast skills to some extent. The positive impact is significant using a direct RF assimilation scheme, when Vr and RF data are applied together. It suggests that when we applying an indirect RF assimilation scheme, the fitting of more hydrometers in the cost function will tend to cause a slight degradation for other variables such as the wind and temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []