Improved PSi/c-Si and Ga/PSi/c-Si nanostructures dependent solar cell efficiency

2020 
Nanometre size semiconductors have been a topic of great interest. Porous silicon surfaces have been fabricated by photoelectrochemical etching for n-type silicon wafers. The objective of this paper focuses on the investigation of the effecting of deposited p-Ga/n-PSi on the performance of silicon solar cells. Gallium thin layer (400 nm) doped n-type porous silicon has been Determined by photoluminescence spectroscopy. Ga doping process was carried out by a physical vapor deposition technique and has subsequently been annealed at 1100 °C for 3 h. The surface morphology resulting from this process was observed by scanning electron microscopy. The measured spectra illustrate that the luminescence peak of PSi-doped Ga was shifted strongly to a shorter wavelength. One luminescence band appears at the peak of about ~ 612 nm for PSi/c-Si; while the photoluminescence spectrum of Ga/PSi/c-Si is produced by two light bands with peaks about ~ 435 and ~ 830 nm. The fabricated solar cell showed good photovoltaic properties were the conversion efficiency increased from (12.25 to 14.8%) and the filling factor increased from (79.47–82.33) in comparison with other solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    5
    Citations
    NaN
    KQI
    []