Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting.

2020 
The development of low-cost, high-activity, durable non-precious metal bifunctional electrocatalysts is of great importance in the production of hydrogen by water electrolysis. In this work, we have prepared new Al-doped Ni3S2 nanosheet arrays grown on Ni foam (Al-Ni3S2/NF) as an excellent bifunctional electrocatalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The Al-Ni3S2/NF electrode obtained only requires extremely low overpotentials of 86 and 223 mV for the HER and OER to achieve a current density of 10 mA cm-2 in 1 M KOH, respectively. Moreover, the electrolytic cell assembled using this electrode as both cathode and anode provides a current density of 10 mA cm-2 at an extremely low battery voltage of 1.58 V relative to that with Ni3S2/NF (1.71 V). Additionally, both experimental results and theoretical calculations reveal that the increased electrochemical active surface area and optimized intermediate adsorption free energies are responsible for the enhanced electrocatalytic performance. This work provides a promising bifunctional electrocatalyst for water electrolysis in alkaline media with broad application prospects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    6
    Citations
    NaN
    KQI
    []