Influence ofcis-dichlorodiamineplatinum on glioma cell morphology and cell cycle kinetics in tissue culture

1987 
C6 glioma cells (CCL 107) were cultured for three days and then treated withcis-dichlorodiamineplatinum (cis-DDP) at doses of 0.2–10 µg/ml medium. Changes in DNA synthesis and DNA content, as well as morphology of cells and chromatin distribution, were examined from the first post-treatment day onwards. The number of cells labelled with [3H]thymidine, detected autoradiographically, decreased after treatment with 0.2–10 µg/ml by approximately one half on post-treatment day 1 and diminished further by the third day after treatment. The labelled cells were entirely absent only after treatment with 10µg/ml, 7 days post-treatment. Mitoses decreased from 1.4–0.6% by post-treatment day 1 and completely disappeared by day 3 (1 µg/ml). Feulgen cytophotometry and propidium iodide cytofluorimetry revealed accumulation of cells in the S-phase, especially the latter part (0.5 and 1.0 µg/ml, post-treatment day 1) and subsequently also in G2 phase (post-treatment day 3). Incomplete cyto- and karyokinesis in some cycling cells was indicated by an increased number of binucleate cells and nuclei of higher ploidy classes. Labelled cells with intermediate DNA values were, on average, labelled less intensively, as was revealed by simultaneous measurements of DNA content and [3H]thymidine incorporation. Some cells displayed reduction in grain density over heterochromatin clumps. This would be in agreement with the late S-phase block of DNA replication. After post-treatment day 3 the density of cells in cultures was substantially lower. This was due to slowed transversing through the cell cycle and cell death occurring after post-treatment day 1 with higher doses or after day 2 with lower doses (up to 1 µg/ml). The size of the nuclei of surviving cells enlarged initially (post-treatment day 1) and later (day 7) giant cells with long, branched fibres similar to those of reactive astrocytes occurred. Texture analysis of Feulgen-stained nuclei revealed that the chromatin of cells treated withcis-DDP became less evenly distributed. This might be due either to the direct influence ofcis-DDP on the DNA molecule, or mediated by changes in cytoskeleton and cAMP levels described earlier.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    12
    Citations
    NaN
    KQI
    []