Imaginary Magnetic Tweezers for Massively Parallel Surface Adhesion Spectroscopy

2011 
A massively parallel magnetic tweezer system has been constructed that utilizes the self-repulsion of colloidal beads from a planar interface via a magnetic dipole image force. Self-repulsion enables the application of a uniform magnetic force to thousands of beads simultaneously, which permits the measurement of unbinding histograms at the lowest loading rates ever tested. The adhesion of 9.8 μm polystyrene beads to a fluorocarbon, PEG, and UV-irradiated PEG surfaces were measured between 10−3−100 pN/s force loading rates, revealing the presence of both kinetic and quasi-equilibrium unbinding regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    24
    Citations
    NaN
    KQI
    []