Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource

2018 
ABSTRACTContinuously increasing energy requirements coupled with environmental pollution have established pressure to utilise lignocellulosic biomass for energy production. Acacia auriculiformis is a fast-growing species capable of accumulating large quantities of biomass without requiring major agricultural inputs. The aim of this research was to investigate the thermochemical properties of its tree parts including phyllodes (leaves), trunk, bark and branches to utilise them as solid fuel to produce bioenergy. Thermogravimetric and derivative thermogravimetric (TGA and DTG ) analyses were performed to study the biomass degradation behaviour, which showed the decomposition of biomass in three major stages corresponding to the decomposition of hemicellulose, cellulose and lignin components. Fourier transform infrared (FTIR) analysis was carried out to determine the functional groups. Proximate analysis showed the weight percentages of moisture contents, volatile matter, fixed carbon and ash contents as 7.2...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    24
    Citations
    NaN
    KQI
    []