Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals.

2014 
The creation of p–n junction structure in photocatalysts is a smart approach to improve the photocatalytic activity, as p–n junctions can potentially act to suppress the recombination reaction. Understanding the surface conditions of the junction parts is one of the biggest challenges in the development of photocatalyst surface chemistry. Here, we show a relationship between the photocatalytic activity and potential gradient of the junction surface prepared from two-dimensional crystals of p-type NiO and n-type calcium niobate (CNO). The ultrathin (ca. 2 nm) junction structure and the surface potential were analyzed using low energy ion scattering spectroscopy and Kelvin probe force microscopy. The photocatalytic H2 production rate for the n–p (CNO/NiO) junction surface was higher than those for p–n (NiO/CNO) junction, p, and n surfaces. The surface potential of the CNO/NiO junction part (surface: CNO) was lower than that of the CNO crystals in the same CNO crystal surface. These potential gradients resul...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    132
    Citations
    NaN
    KQI
    []