Total-variation-regularized Tensor Ring Completion for Remote Sensing Image Reconstruction

2019 
In recent studies, tensor ring (TR) decomposition has shown to be effective in data compression and representation. However, the existing TR-based completion methods only exploit the global low-rank property of the visual data. When applying them to remote sensing (RS) image processing, the spatial information in the RS image is ignored. In this paper, we introduce the TR decomposition to RS image processing and propose a tensor completion method for RS image reconstruction. We incorporate the total-variation regularization into the TR completion model to exploit the low-rank property and spatial continuity of the RS image simultaneously. The proposed algorithm is solved by the augmented Lagrange multiplier method and has shown the superior performance in hyperspectral image reconstruction and multi-temporal RS image cloud removal against the state-of-the-art algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    8
    Citations
    NaN
    KQI
    []