Geometric regularity for elliptic equations in double-divergence form

2020 
In this paper, we examine the regularity of the solutions to the double-divergence equation. We establish improved Holder continuity as solutions approach their zero level-sets. In fact, we prove that $\alpha$-Holder continuous coefficients lead to solutions of class $\mathcal{C}^{1^-}$, locally. Under the assumption of Sobolev differentiable coefficients, we establish regularity in the class $\mathcal{C}^{1,1^-}$. Our results unveil improved continuity along a nonphysical free boundary, where the weak formulation of the problem vanishes. We argue through a geometric set of techniques, implemented by approximation methods. Such methods connect our problem of interest with a target profile. An iteration procedure imports information from this limiting configuration to the solutions of the double-divergence equation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []