Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes

2018 
Abstract Clinical surveillance of acute heart transplantation rejection requires repeated invasive endomyocardial biopsies and noninvasive diagnostic techniques are desperately needed. It is acknowledged that T lymphocyte infiltration is the central process of acute rejection. We hypothesized that ultrasound molecular imaging with T lymphocyte-targeted nanobubbles could be used to detect acute rejection in heart transplantation. In this study, nanobubbles bearing anti-CD3 antibody (NB CD3 ) or isotype antibody (NB con ) were prepared and characterized. There was significant adhesion of NB CD3 to T lymphocytes compared with NB con in vitro . The signal intensity of the adherent NB CD3 was significantly higher than that of the NB con in allograft rats, but not significantly different in isograft rats. Furthermore, the signal intensity of NB CD3 in allograft rats was significantly higher than that in isograft rats, indicating more T lymphocyte infiltration in allograft rats compared with isograft rats. These results were further confirmed by immunohistochemistry examination, and the signal intensity of NB CD3 was positively correlated with the number of T lymphocytes in allograft rats. In summary, ultrasound molecular imaging with T lymphocyte-targeted nanobubbles can detect T lymphocyte infiltration in acute rejection and could be used as a noninvasive method in acute rejection detection after cardiac transplantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    31
    Citations
    NaN
    KQI
    []