Shock metamorphism of plagioclase and amphibole (Experimental data)

2007 
The shock metamorphism of plagioclase and amphibole of various chemical compositions from amphibolite and granulite facies schists was studied in experiments with shock wave loading of samples in steel recovery ampoules of plane geometry. A maximum shock pressure was reached after a few circulations of waves in the sample (stepwise shock wave compression) and varied within 26–52 GPa. The recovered samples were examined by the methods of scanning electron microscopy and microprobe and X-ray phase analysis. It is established that an increase in the F, Ti, and K concentrations in amphibole and a decrease in the Ca concentration in plagioclase make these minerals more stable with respect to shock waves. It is shown that the migration of some chemical elements, starting already at the solid phase stage of transformation in plagioclase and amphibole, is intensified at the stage of melting. It is established that isotropization of plagioclase occurs through two different mechanisms. At relatively low pressures, it is caused by the fragmentation of substance at the microlevel and is accompanied by the formation of maskelynite, a typical mineral of meteorites and astrobleme rocks. At higher pressures, isotropization is associated with melting-induced amorphization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    9
    Citations
    NaN
    KQI
    []