Exploring energy-performance-quality tradeoffs for scientific workflows with in-situ data analyses

2015 
Power and energy are critical concerns for high performance computing systems from multiple perspectives, including cost, reliability/resilience and sustainability. At the same time, data locality and the cost of data movement have become dominating concerns in scientific workflows. One potential solution for reducing data movement costs is to use a data analysis pipeline based on in-situ data analysis.However, the energy-performance-quality tradeoffs impact of current optimizations and their overheads can be very hard to assess and understand at the application level.In this paper, we focus on exploring performance and power/energy tradeoffs of different data movement strategies and how to balance these tradeoffs with quality of solution and data speculation. Our experimental evaluation provides an empirical evaluation of different system and application configurations that give insights into the energy-performance-quality tradeoffs space for in-situ data-intensive application workflows. The key contribution of this work is a better understanding of the interactions between different computation, data movement, energy, and quality-of-result optimizations from a power-performance perspective, and a basis for modeling and exploiting these interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []