Thermal Instability of Functionally Graded Shallow Spherical Shell

2006 
In this paper, thermal instability of shallow spherical shells made of functionally graded material (FGM) is considered. The governing equations for a thin spherical shell based on the Donnell–Mushtari–Vlasov theory are obtained. The equations are derived using the Sanders simplified kinematic relations and variational method. It is assumed that the mechanical properties vary linearly through the shell thickness. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. Analytical solutions are obtained for three types of thermal loading including Uniform Temperature Rise (UTR), Linear Radial Temperature (LRT), and Nonlinear Radial Temperature (NRT). The results are validated with the known data in the literature. Communicated by Theodore R. Tauschert on September 1, 2005.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    38
    Citations
    NaN
    KQI
    []