Sintering of zirconia-based nanomaterials studied by variable-energy slow-positron beam

2014 
A variable-energy slow-positron beam was applied to the investigations of the tetragonal yttria-stabilised zirconia (YSZ), the YSZ co-doped with small amount of Cr2O3. The initial nanopowders exhibiting the mean particle size of ≈ 20 nm were prepared by co-precipitation technique. Prior the sintering, the nanopowders were calcined and compacted using a pressure of 500 MPa. The ordinary shape parameters of the Doppler-broadened annihilation peak and the relative positronium 3γ-fractions were determined as functions of positron energy. The results are consistent with a remarkable sintering-induced grain growth and disappearance of porosity which is driven out from the sample interior toward a thin subsurface layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    1
    Citations
    NaN
    KQI
    []