Inactivation effects of UV irradiation and ozone treatment on the yeast and the mold in mineral water.

2010 
In recent years, bottled mineral water has undergone inactivation by methods other than the traditional heat treatment during the production process; there are fewer reports of the effectiveness of these inactivation methods on yeasts and molds in mineral water than on bacteria and protozoan oocysts. In this study, we evaluated the effects of UV irradiation and ozone treatment compared with heat treatment at 85°C on yeast cells and mold spores inoculated into mineral water. A 5-log reduction occurred at a UV radiation dose of 31,433 μJ/cm 2 for Saccharomyces cerevisiae and at 588,285 μJ/cm 2 for Penicillium pinophilum. The treatment time for 5-log reduction estimated for UV irradiation was about 0.6 min for S. cerevisiae and about 10.7 min for P. pinophilum; at an ozone concentration of 0.1 ppm, it was 1.75 min for S. cerevisiae and 2.70 min for P. pinophilum, and at a concentration of 0.6 ppm, it was 0.32 min for S. cerevisiae and 0.57 min for P. pinophilum. Comparison of the inactivation effects among the three methods showed that UV irradiation and ozone treatment were less effective than heat treatment at 85°C. Thus, when UV irradiation and ozone treatment are used for inactivation of mineral water, it seems that they need to be combined with heat treatment to achieve a definite effect. Yeast cells are more sensitive to all three inactivation methods than are mold spores, and the sensitivity of yeast cells and mold spores to these inactivation methods may vary among genera.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    8
    Citations
    NaN
    KQI
    []