Synthetic biology of modular proteins

2017 
ABSTRACTThe evolution of natural modular proteins and domain swapping by protein engineers have shown the disruptive potential of non-homologous recombination to create proteins with novel functions or traits. Bacteriophage endolysins, cellulosomes and polyketide synthases are 3 examples of natural modular proteins with each module having a dedicated function. These modular architectures have been created by extensive duplication, shuffling of domains and insertion/deletion of new domains. Protein engineers mimic these natural processes in vitro to create chimeras with altered properties or novel functions by swapping modules between different parental genes. Most domain swapping efforts are realized with traditional restriction and ligation techniques, which become particularly restrictive when either a large number of variants, or variants of proteins with multiple domains have to be constructed. Recent advances in homology-independent shuffling techniques increasingly address this need, but to realize ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    12
    Citations
    NaN
    KQI
    []