Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites
2018
Abstract Streptomyces peucetius ATCC 27952 is a filamentous soil bacterium with potential to produce anthracyclines such as doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of cancer. Here we present the complete genome sequence of S. peucetius ATCC 27952, which consists of 8,023,114 bp with a linear chromosome, 7187 protein-coding genes, 18 rRNA operons and 66 tRNAs. Bioinformatic analysis of the genome sequence revealed ∼68 putative gene clusters involved in the biosynthesis of secondary metabolites, including diverse classes of natural products. Diverse secondary metabolites of PKS (polyketide synthase) type II (doxorubicin and daunorubicin), NRPS (non-ribosomal peptide synthase) (T1-pks), terpene (hopene) etc. have already been reported for this strain. In addition, in silico analysis suggests the potential to produce diverse compound classes such as lantipeptides, lassopeptides, NRPS and polyketides. Furthermore, many catalytically-efficient enzymes involved in hydroxylation, methylation etc. have been characterized in this strain. The availability of genomic information provides valuable insight for devising rational strategies for the production and isolation of diverse bioactive compounds as well as for the industrial application of efficient enzymes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
12
Citations
NaN
KQI