Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation

2019 
A theoretical method of using high-order waveguide-mode interference combined with sample rotation is proposed to fabricate different kinds of three-dimensional nanolattice structures. The lithography sample is assisted by an asymmetric metal-cladding dielectric waveguide structure. High-order waveguide modes can be excited in the photoresist layer by both transverse magnetic and transverse electric polarized light. By utilizing multiple exposures of high-order waveguide-mode interference combined with sample-rotation, various three-dimensional nanolattice structures can be obtained. The resulting optical field distributions are simulated using the finite element method in this study, and sample rotation is expressed by coordinate matrix transformation. As examples, the three-dimensional optical field distributions resulting from fifth-order waveguide-mode interference were simulated with 90° and 60° sample rotations and multiple exposures. The results show that a quasi-cuboid structure with a simple tetragonal arrangement and a quasi-hexagonal structure with a hexagonal close-packed lattice can be obtained. Moreover, the numerical simulation results revealed that the shapes, sizes, arrangements, and periods of the structures can be controlled by the rotation method, photoresist thickness, waveguide modes used for exposure, and so on.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    25
    Citations
    NaN
    KQI
    []