Projection-Based Control of Parallel Mechanisms

2011 
The unifying idea for most model-based control approaches for parallel mechanism is to derive a minimal-order dynamics model of the system and then design the corresponding controller. The problem with such a control approach is that the controller needs to change its structure whenever the mechanical system changes its number of degrees-of-freedom. This paper presents a projection-based control scheme for parallel mechanism that works whether the system is overactuated or not; it does not require derivation of the minimal-order dynamics model. Since the dimension of the projection matrix is fixed, the projection-based controller does not need to change its structure whenever the mechanical system changes its number of degrees-of freedom. The controller also allows to specify lower and upper bounds on the actuator forces/torques, making it suitable not only for the control of parallel manipulators with limited force/torque capability of the actuators but also for backlash-free control of parallel manipulators as well as for control of tendon driven parallel manipulators. The stability of the projection-based controllers is rigourously proved, while the condition for the controllability of parallel manipulators is also derived in detail. Finally, experimental results obtained from a simple parallel mechanism, which changes its degrees-of-freedom, are appended. The results also demonstrate that the maximum actuator torque can be reduced by 20% if the actuator saturation is taken into account by the controller.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []