The effect of energy peak drift on the calibration of a high resolution gamma-ray soil density gauge

1994 
Summary High spatial resolution is obtained from a gamma-ray transmission density gauge by restricting the measured counts to a narrow band of the energy spectrum, close to the emission energy peak. The effect on measurement accuracy of any movement of this measurement window relative to the energy peak was investigated. The findings were related to anticipated energy peak movements in a proposed LED-based gain-stabilization system. Movements of the energy peaks during recording of unstabilized spectra prevented direct comparisons of spectra at different positions. A simulation procedure was, therefore, developed in which movements of the measurement window relative to sets of stable calibration spectra were examined. When analysing spectra, recorded using a gauge with a different gain-stabilization system, accuracy was found to be unaffected by simulated peak movements of up to 0.03 MeV in the direction of increasing energy. However, movements of stabilized spectra in the direction of decreasing energy, and of unstabilized spectra in either direction, increased measurement errors to twice the level of inherent measurement errors within 0.02 MeV, with errors in bulk density of up to 0.7 Mg m−3 for movements of 0.1 MeV. The spectra of the new LED-based stabilization system are expected to behave in a manner similar to the unstabilized system, therefore requiring regular monitoring of the peak position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []