Experimental Study of Shock Oscillation over a Transonic Supercritical Profile

2009 
Shock wave/turbulent boundary-layer interaction and flow separation may induce self-sustained large-scale oscillations on a profile at transonic Mach number. This phenomenon, known as transonic buffet, is at the origin of intense pressure fluctuations which can have detrimental effects, both in external and internal aerodynamics. The present paper describes a new experiment executed in the ONERA S3Ch transonic wind tunnel on shock oscillations over the OAT15A supercritical profile. These experiments have allowed the precise definition of the conditions for buffet onset and the characterization of the properties of the periodic motion from unsteady surface pressure measurements. The flowfield behavior has been described in great detail thanks to high-speed schlieren cinematography and surveys with a two-component laser Doppler velocimetry along with a conditional sampling technique. The first aim of this study was to provide the computational fluid dynamics community with well-documented test cases to validate advanced computing methods. Concerning the physics of the phenomenon, it is suggested that it is mediated by acoustic waves which are produced at the trailing edge and which travel on the two sides of the airfoil. Also, the experimental results strongly suggest that the phenomenon is essentially two-dimensional, even if three-dimensional effects are also detected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    154
    Citations
    NaN
    KQI
    []