Impact of the current feedback on kinetic energy over the North-EastAtlantic from a coupled ocean/atmospheric boundary layer model

2020 
Abstract. A one-dimensional Atmospheric Boundary Layer (ABL1D) is coupled with the NEMO ocean model and implemented over the Iberian–Biscay–Ireland (IBI) area at 1/36° resolution to investigate the retroactions between the surface currents and the atmosphere, namely the Current FeedBack (CFB) in this region of low mesoscale activity. The ABL1D-NEMO coupled model is forced by a large-scale atmospheric reanalysis (ERA-Interim) and integrated over the period 2016–2017. The mechanisms of eddy kinetic energy damping and ocean upper-layers re-energization are realistically simulated, meaning that the CFB is properly represented by the model. In particular, the dynamical coupling coefficients between the curls of surface stress/wind and current are in agreement with the literature. The effects of CFB on the kinetic energy (KE) are then investigated through a KE budget. We show that the KE decrease induced by the CFB is significant down to 1500 m. Near the surface (0–300 m), most of the KE decrease can be explained by a reduction of the surface wind work by 4 %. At depth (300–2000 m), the CFB induce a reduction of the pressure work (i.e: the PE to KE conversion) associated with a reduction of KE which is significant down to 1500 m. We show that this reduction of KE at depth can be explained by CFB-induced Ekman pumping above eddies that weakens the mesoscale activity and this over the whole water column.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []