Amygdala functional connectivity in major depression – disentangling markers of pathology, risk and resilience

2019 
BACKGROUND: Limbic-cortical imbalance is an established model for the neurobiology of major depressive disorder (MDD), but imaging genetics studies have been contradicting regarding potential risk and resilience mechanisms. Here, we re-assessed previously reported limbic-cortical alterations between MDD relatives and controls in combination with a newly acquired sample of MDD patients and controls, to disentangle pathology, risk, and resilience. METHODS: We analyzed functional magnetic resonance imaging data and negative affectivity (NA) of MDD patients (n = 48), unaffected first-degree relatives of MDD patients (n = 49) and controls (n = 109) who performed a faces matching task. Brain response and task-dependent amygdala functional connectivity (FC) were compared between groups and assessed for associations with NA. RESULTS: Groups did not differ in task-related brain activation but activation in the superior frontal gyrus (SFG) was inversely correlated with NA in patients and controls. Pathology was associated with task-independent decreases of amygdala FC with regions of the default mode network (DMN) and decreased amygdala FC with the medial frontal gyrus during faces matching, potentially reflecting a task-independent DMN predominance and a limbic-cortical disintegration during faces processing in MDD. Risk was associated with task-independent decreases of amygdala-FC with fronto-parietal regions and reduced faces-associated amygdala-fusiform gyrus FC. Resilience corresponded to task-independent increases in amygdala FC with the perigenual anterior cingulate cortex (pgACC) and increased FC between amygdala, pgACC, and SFG during faces matching. CONCLUSION: Our results encourage a refinement of the limbic-cortical imbalance model of depression. The validity of proposed risk and resilience markers needs to be tested in prospective studies. Further limitations are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    7
    Citations
    NaN
    KQI
    []