Semiannual variation of Pc5 ULF waves and relativistic electrons over two solar cycles of observations: comparison with predictions of the classical hypotheses

2019 
Abstract. Pc5 ULF (ultra-low frequency) waves can energize electrons to relativistic energies of > 2 MeV in geostationary orbits. Enhanced fluxes of such electrons can induce operational anomalies in geostationary satellites. The variations of the two quantities in time scales ranging from days to solar cycles are thus of interest in gauging their space weather effects over different time frames. In this study, we present a statistical analysis of two 11-year solar cycles (Cycle 22 and 23) of data comprising the daily relativistic electron fluence observed by GOES geostationary satellites and daily Pc5 power derived from auroral zone magnetic observatories in Canada. Firstly, an autocorrelation analysis is carried out, which indicates 27-day periodicity in both parameters for all solar phases, and such a periodicity is most pronounced in the declining and late-declining phase. Also, a 9-day and 13-day periodicity, though not present in all the years, are seen in some years. Then, a superposed epoch analysis is performed to scrutinize Semiannual Variation (SAV), which shows fluence near the equinoxes is one order of magnitude higher than near solstices and Pc5 power is 0.5 orders of magnitude higher near the equinoxes than near the solstices. We then evaluate three possible SAV mechanisms (which are based on the Axial, Equinoctial, and Russel & McPherron effect) to determine which one can best explain the observations. Correlation of the profiles of the observational curves with those of the angles that control each of the SAV mechanisms suggests that the Equinoctial mechanism may be responsible for the SAV of electron fluence while both the Equinoctial and the Russell & McPherron mechanisms are important for the SAV of Pc5 power. Comparable results are obtained when using functional dependencies of the main angles instead of the angles mentioned above. Lastly, superposed curves of fluence and Pc5 power were used to calculate least-square fits with a fixed semiannual period. Comparison of maxima and minima of the fits with those predicted by the three mechanisms shows that the Equinoctial effect better estimates the maxima and minima of the SAV in fluence while for the SAV in Pc5 power the Equinoctial and Russell & McPherron mechanisms predict one maximum and one minimum each.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []