The number of Dirac‐weighted eigenvalues of Sturm–Liouville equations with integrable potentials and an application to inverse problems

2021 
In this paper, we further Meirong Zhang, et al.'s work by computing the number of weighted eigenvalues for Sturm-Liouville equations, equipped with general integrable potentials and Dirac weights, under Dirichlet boundary condition. We show that, for a Sturm-Liouville equation with a general integrable potential, if its weight is a positive linear combination of $n$ Dirac Delta functions, then it has at most $n$ (may be less than $n$, or even be $0$) distinct real Dirichlet eigenvalues, or every complex number is a Dirichlet eigenvalue; in particular, under some sharp condition, the number of Dirichlet eigenvalues is exactly $n$. Our main method is to introduce the concepts of characteristics matrix and characteristics polynomial for Sturm-Liouville problem with Dirac weights, and put forward a general and direct algorithm used for computing eigenvalues. As an application, a class of inverse Dirichelt problems for Sturm-Liouville equations involving single Dirac distribution weights is studied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []