Orthogonal bundles and skew-Hamiltonian matrices
2015
Using properties of skew-Hamiltonian matrices and classic connectedness results, we prove that the moduli space $M_{ort}^0(r,n)$ of stable rank $r$ orthogonal vector bundles on $\mathbb{P}^2$, with Chern classes $(c_1,c_2)=(0,n)$, and trivial splitting on the general line, is smooth irreducible of dimension $(r-2)n-{r \choose 2}$ for specific values of $r$ and $n$.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
6
Citations
NaN
KQI