Preferential Stripping of a Lithium Protrusion Resulting in Recovery of a Planar Electrode

2020 
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. Lithium metal is a high-energy-density battery electrode material, but the largely irreversible growth of lithium protrusions on an initially planar electrode during cycling makes it unsuitable for incorporation into a commercial battery. In this study, a lithium electrode with globular protrusions was stripped electrochemically, and the local morphology of the electrode as a function of time was determined by hard X-ray tomography. We demonstrate that globules are preferentially stripped compared to a planar electrode in our system, which incorporates a nanostructured block copolymer electrolyte. We report current density at the electrode as a function of micron-scale position and time. The local current density during the electrode healing process calculated from a reference frame at the electrode/electrolyte interface provides insight into the driving forces responsible for selective stripping of the globule. These results imply the possibility of discharging protocols that may return a lithium electrode to its initial planar state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []