Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey.

2020 
Honey can be categorized as monofloral and polyfloral honey. There is a strong interest in science and commerce, to further differentiate honey. In the present study, Schefflera abyssinica and polyfloral honey from Sheka Forest, Ethiopia was investigated. Botanical origin was determined based on Melissopalynology. Refractive index, moisture, sugars, ash, pH, free acidity, hydroxymethylfurfural, optical density, diastase activity, protein, and color were determined based on the standard method of the international honey commission (IHC) and AOAC. Antioxidant activity and Antioxidant content were determined using UV- visible spectroscopy. The level of pollen dominancy for monofloral honey (Schefflera abyssinica) ranged from 76.2 to 85.8%. The polyfloral honey stuffed with a variety of pollen grain ranged from 2.2% (Coffea arabica) to 23.2% (Schefflera abyssinica). Schefflera abyssinica honey contained more total phenolic compounds (75.08 ± 2.40 mg GAE/100g), and total flavonoids (42.03 ± 1.49 mg QE/100 g), as well as had stronger DPPH (44.43 ± 0.97%) and hydrogen peroxide (78.00 ± 4.82%) scavenging activity. The principal component analysis revealed that Schefflera abyssinica honey associated with the antioxidant properties of total phenolic, total flavonoids, DPPH, and H2O2., which revealed that floral honey sources can essentially differentiated by antioxidant patterns. The higher electrical conductivity (0.42 ± 0.02 mS/cm), ash (0.41 ± 0.05 g/100g), pH (4.01 ± 0.08), optical density (0.26 ± 0.03) and diastase activity (5.21 ± 0.17 Schade units) were recorded in polyfloral honey. Schefflera abyssinica and polyfloral honey satisfy the requirement of national and international standards. The pollen analysis in combination with antioxidant properties distinguishes Schefflera abyssinica from polyfloral honeys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    3
    Citations
    NaN
    KQI
    []