A Complete Dichotomy for Complex-Valued Holant^c.

2017 
Holant problems are a family of counting problems on graphs, parametrised by sets of complex-valued functions of Boolean inputs. Holant^c denotes a subfamily of those problems, where any function set considered must contain the two unary functions pinning inputs to values 0 or 1. The complexity classification of Holant problems usually takes the form of dichotomy theorems, showing that for any set of functions in the family, the problem is either #P-hard or it can be solved in polynomial time. Previous such results include a dichotomy for real-valued Holant^c and one for Holant^c with complex symmetric functions. Here, we derive a dichotomy theorem for Holant^c with complex-valued, not necessarily symmetric functions. The tractable cases are the complex-valued generalisations of the tractable cases of the real-valued Holant^c dichotomy. The proof uses results from quantum information theory, particularly about entanglement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    13
    Citations
    NaN
    KQI
    []