Influence of Bi3+ ion on structural, optical, dielectric and magnetic properties of Eu3+ doped LaVO4 phosphor

2020 
Abstract In this paper, we have studied the structural, optical, dielectric and magnetic properties of Eu3+, Bi3+ co-doped LaVO4 phosphor prepared by solid state reaction method. Rietveld structural analysis of the samples confirms the monoclinic crystal structure with P21/n space group. The particles size of Eu3+ doped LaVO4 phosphor increased in presence of Bi3+ ion. The excitation spectrum of Eu3+, Bi3+ co-doped LaVO4 phosphor reveals bands due to charge transfer state (CTS) and electronic transitions of Eu3+ and Bi3+ ions. The Eu3+ doped LaVO4 phosphor gives intense red emission centred at 613 nm due to 5D0→7F2 transition of Eu3+ ion excited at 266, 355 and 394 nm wavelengths. When Bi3+ and Eu3+ ions are co-doped in the LaVO4 phosphor the photoluminescence intensity is enhanced upto two times. The photoluminescence intensity is largest for the 266 nm excitation. This is due to energy transfer from CTS and (1P1, 3P1) levels of the Bi3+ ion to 5D4 level of the Eu3+ ion and increase in the particles size of phosphor. The Eu3+, Bi3+ co-doped LaVO4 phosphor also shows excellent dielectric and magnetic properties with a variation in frequency and magnetic field respectively. Thus, the Eu3+, Bi3+ co-doped LaVO4 phosphor may be useful in fabricating displays devices, red emitting phosphors, dielectric capacitors and magnetic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    11
    Citations
    NaN
    KQI
    []