Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-β and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells

2003 
We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor–β (TGF-β) receptor serine/threonine kinases, in TGF-β–dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-β–dependent differentiation of these cells to monocytes, but not retinoic acid–dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D 3 also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-β1. Simultaneous treatment of these cells with TGF-β1 and all- trans- retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho–Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-β1 alone. TGF-β1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-β–induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor–α (RAR-α), ATRA is unable to reduce levels of TGF-β–induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-β, whereby a putative RAR-α–dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-β, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-β–dependent differentiation of the cells to monocytic end points.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    64
    Citations
    NaN
    KQI
    []