Wearable Antennas: A Review of Materials, Structures and Innovative Features for Autonomous Communication and Sensing

2019 
Wearable antennas have gained much attention in recent years due to their attractive features and possibilities in enabling lightweight, flexible, low cost and portable wireless communication and sensing. Such antennas need to be conformal when used on different parts of the human body, thus need to be implemented using flexible materials and designed in a low profile structure. Ultimately, these antennas need to be capable of operating with minimum degradation in proximity to the human body. Such requirements render the design of wearable antennas challenging, especially when considering aspects such as their size compactness, effects of structural deformation and coupling to the body, and fabrication complexity and accuracy. Despite slight variations in severity according to applications, most of these issues exist in the context of body-worn implementation. This review aims to present the different challenges and issues in designing wearable antennas, their material selection, and fabrication techniques. More importantly, recent innovative methods in back radiations reduction techniques, circular polarization (CP) generation methods, dual polarization techniques and providing additional robustness against environmental effects are first presented. This is followed by a discussion of innovative features and their respective methods in alleviating these issues recently proposed by the scientific community researching in this field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    63
    Citations
    NaN
    KQI
    []