Insight on the Enhanced Reversibility of a Multimetal Layered Oxide for Sodium-Ion Battery

2018 
Sodium-ion layered cathodes range along a vast variety of structures and chemical compositions that influence the physical–chemical characteristics and the electrochemical features in battery. In this work, we show that the synergistic effects of various metals, enhanced structure, and optimal morphology of Na0.48Al0.03Co0.18Ni0.18Mn0.47O2 material lead to remarkable reversibility in a sodium cell. X-ray diffraction refinement evidences that the electrode has a P3/P2-type layered structure, whereas scanning electron microscopy study shows a morphology consisting of primary layers with nanometric thickness regularly stacked into uniform micrometric particles. In-depth investigation combining ex situ X-ray diffraction, galvanostatic intermittent titration, and voltammetry measurements reveals solid-solution Na+ intercalation into the layered oxide between 1.4 and 4.6 V versus Na+/Na with relevant lattice stability. Furthermore, the study shows the absence of phase transitions during Na+ exchange within the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    14
    Citations
    NaN
    KQI
    []