One-particle density matrix occupation spectrum of many-body localized states after a global quench

2017 
The emergent integrability of the many-body localized phase is naturally understood in terms of localized quasiparticles. As a result, the occupations of the one-particle density matrix in eigenstates show a Fermi-liquid-like discontinuity. Here, we show that in the steady state reached at long times after a global quench from a perfect density-wave state, this occupation discontinuity is absent, reminiscent of a Fermi liquid at a finite temperature, while the full occupation function remains strongly nonthermal. We discuss how one can understand this as a consequence of the local structure of the density-wave state and the resulting partial occupation of quasiparticles. This partial occupation can be controlled by tuning the initial state and can be described by an effective temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    31
    Citations
    NaN
    KQI
    []