Efficient Workstealing for Multicore Event-Driven Systems

2010 
Many high-performance communicating systems are designed using the event-driven paradigm. As multicore platforms are now pervasive, it becomes crucial for such systems to take advantage of the available hardware parallelism. Event-coloring is a promising approach in this regard. First, it allows programmers to simply and progressively inject support for the safe, parallel execution of multiple event handlers through the use of annotations. Second, it relies on a workstealing algorithm to dynamically balance the execution of event handlers on the available cores. This paper studies the impact of the workstealing algorithm on the overall system performance. We first show that the only existing workstealing algorithm designed for event-coloring runtimes is not always efficient: for instance, it causes a 33% performance degradation on a Web server. We then introduce several enhancements to improve the workstealing behavior. An evaluation using both micro benchmarks and real applications, a Web server and the Secure File Server (SFS), shows that our system consistently outperforms a state-of-the-art runtime (Libasync-smp), with or without workstealing. In particular, our new workstealing improves performance by up to +25% compared to Libasync-smp without workstealing and by up to +73% compared to the Libasync-smp workstealing algorithm, in the Web server case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []