Crowd Density Estimation using Novel Feature Descriptor.

2019 
Crowd density estimation is an important task for crowd monitoring. Many efforts have been done to automate the process of estimating crowd density from images and videos. Despite series of efforts, it remains a challenging task. In this paper, we proposes a new texture feature-based approach for the estimation of crowd density based on Completed Local Binary Pattern (CLBP). We first divide the image into blocks and then re-divide the blocks into cells. For each cell, we compute CLBP and then concatenate them to describe the texture of the corresponding block. We then train a multi-class Support Vector Machine (SVM) classifier, which classifies each block of image into one of four categories, i.e. Very Low, Low, Medium, and High. We evaluate our technique on the PETS 2009 dataset, and from the experiments, we show to achieve 95% accuracy for the proposed descriptor. We also compare other state-of-the-art texture descriptors and from the experimental results, we show that our proposed method outperforms other state-of-the-art methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []